如何理解MapReduce与YARN中的Tez流程图?

MapReduce YARN(Yet Another Resource Negotiator)是Hadoop生态系统中的一个资源管理平台,用于调度用户应用程序。Tez是基于YARN的框架,通过优化任务执行和减少数据处理步骤来提高MapReduce作业的速度。

在大数据技术领域,MapReduce是一个广泛使用的分布式计算框架,而YARN则是Hadoop中的一个资源管理系统,负责集群资源管理和作业调度,下面将详细解析MapReduce在YARN上执行的流程,包括关键的Map和Reduce阶段,及其与ResourceManager的交互过程。

mapreduce yarn流程图_Tez
(图片来源网络,侵删)

1、Job提交和初始化

作业配置和提交:客户端通过配置org.apache.hadoop.mapreduce.Job类来定义一个MapReduce作业,此作业通过调用waitForCompletion(true)方法提交到YARN集群并等待其完成。

资源请求与分配:提交的作业请求ResourceManager(RM)为其分配必要的计算资源,ResourceManager负责协调集群资源,并启动ApplicationMaster(AM)来管理具体的应用程序。

2、Map阶段

输入分片与任务创建:客户端提交作业前,MapReduce会根据输入数据的大小和配置将数据分割成多个输入分片(Input Splits),每个分片将由一个Map任务处理。

Map任务执行:Map任务执行用户定义的Map函数,处理输入数据并生成中间的键值对,这些输出将进行Shuffle和Sort,以便后续Reduce任务处理。

3、Shuffle和Sort

mapreduce yarn流程图_Tez
(图片来源网络,侵删)

数据传输:Map任务的输出需要被分区、排序并传输给对应的Reduce任务,这一过程称为Shuffle,是MapReduce中至关重要的一环。

4、Reduce阶段

Reduce任务执行:每个Reduce任务负责处理一组特定关键字的中间数据,Reduce任务将中间键值对作为输入,执行用户定义的Reduce函数,并输出最终结果。

5、作业完成

作业结束和资源释放:作业完成后,ResourceManager会通知AM,随后AM和所有容器都会被关闭,资源被释放以供其他作业使用。

6、故障处理

任务失败自动恢复:如果任务执行失败,YARN会自动在其他节点上重新调度该任务,确保数据的完整性和系统的容错性。

mapreduce yarn流程图_Tez
(图片来源网络,侵删)

将探讨一些与YARN上的MapReduce执行相关的技术细节,以及如何优化作业执行的效率:

合理配置切片大小:根据输入数据的总大小和集群的处理能力,适当调整切片(split)大小可以优化Map任务的并行处理效率。

优化Shuffle过程:Shuffle是数据处理中的I/O密集型环节,通过调整Shuffle缓冲区大小和压缩设置,可以减少数据传输的开销。

监控和调试工具:使用Hadoop提供的工具(如Web UI和日志)监控系统状态和作业进度,及时发现和解决运行中的问题。

可以看出MapReduce在YARN上的执行是一个复杂的过程,涉及多个组件和步骤的紧密协作,理解这些基本概念和高级选项可以帮助更有效地利用YARN和MapReduce处理大规模数据集,适当的故障处理机制和优化策略也是保证作业高效稳定运行的关键。

原创文章,作者:未希,如若转载,请注明出处:https://www.kdun.com/ask/890453.html

本网站发布或转载的文章及图片均来自网络,其原创性以及文中表达的观点和判断不代表本网站。如有问题,请联系客服处理。

(0)
未希新媒体运营
上一篇 2024-08-18 05:43
下一篇 2024-08-18 05:45

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

产品购买 QQ咨询 微信咨询 SEO优化
分享本页
返回顶部
云产品限时秒杀。精选云产品高防服务器,20M大带宽限量抢购 >>点击进入