MapReduce是一种编程模型,用于处理和生成大数据集,它由两个阶段组成:Map(映射)和Reduce(归约),在PHP中,我们可以使用Hadoop流式API来实现MapReduce,以下是一个简单的MapReduce示例,用于计算文本文件中单词的出现次数。
1、安装Hadoop PHP扩展
确保已经安装了Hadoop和PHP环境,安装Hadoop PHP扩展,以便在PHP中使用Hadoop Streaming API。
2、编写Mapper脚本(mapper.php)
<?php $stdin = fopen("php://stdin", "r"); $stdout = fopen("php://stdout", "w"); while (!feof($stdin)) { $line = trim(fgets($stdin)); $words = explode(" ", $line); foreach ($words as $word) { fwrite($stdout, $word . "t1 "); } } ?>
3、编写Reducer脚本(reducer.php)
<?php $stdin = fopen("php://stdin", "r"); $stdout = fopen("php://stdout", "w"); $current_word = null; $current_count = 0; while (!feof($stdin)) { $line = trim(fgets($stdin)); $parts = explode("t", $line); $word = $parts[0]; $count = intval($parts[1]); if ($current_word === null) { $current_word = $word; $current_count = $count; } elseif ($current_word === $word) { $current_count += $count; } else { fwrite($stdout, $current_word . "t" . $current_count . " "); $current_word = $word; $current_count = $count; } } if ($current_word !== null) { fwrite($stdout, $current_word . "t" . $current_count . " "); } ?>
4、运行MapReduce作业
假设我们有一个名为input.txt
的文本文件,其中包含一些单词,要运行MapReduce作业,请执行以下命令:
hadoop jar /path/to/hadoopstreaming.jar n files mapper.php,reducer.php n input /path/to/input.txt n output /path/to/output n mapper "php mapper.php" n reducer "php reducer.php"
这将执行MapReduce作业,并将结果输出到指定的输出目录,在这个例子中,输出文件将包含每个单词及其出现次数。
原创文章,作者:未希,如若转载,请注明出处:https://www.kdun.com/ask/871787.html
本网站发布或转载的文章及图片均来自网络,其原创性以及文中表达的观点和判断不代表本网站。如有问题,请联系客服处理。
发表回复