MapReduce的WordCount快速使用Hadoop
1. 环境准备
确保你已经安装了Hadoop和Java,如果没有,请参考官方文档进行安装:https://hadoop.apache.org/docs/stable/hadoopprojectdist/hadoopcommon/SingleCluster.html
2. 编写MapReduce程序
2.1 编写Mapper类
创建一个名为WordCountMapper.java
的文件,并编写如下代码:
import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] words = value.toString().split("\s+"); for (String w : words) { word.set(w); context.write(word, one); } } }
2.2 编写Reducer类
创建一个名为WordCountReducer.java
的文件,并编写如下代码:
import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } context.write(key, new IntWritable(sum)); } }
2.3 编译打包
将这两个类编译成jar包:
$ javac classpathhadoop classpath
d wordcount_classes WordCountMapper.java WordCountReducer.java
$ jar cvf wordcount.jar C wordcount_classes .
3. 运行MapReduce作业
3.1 准备输入数据
将你的文本文件上传到HDFS上的一个目录,例如/input
:
$ hdfs dfs mkdir /input $ hdfs dfs put localfile.txt /input
3.2 运行MapReduce作业
运行以下命令来执行MapReduce作业:
$ hadoop jar wordcount.jar org.example.WordCountDriver /input /output
org.example.WordCountDriver
是你的驱动程序类,它应该包含一个main方法来启动作业,你可以在WordCountDriver.java
文件中添加以下代码:
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCountDriver { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCountDriver.class); job.setMapperClass(WordCountMapper.class); job.setCombinerClass(WordCountReducer.class); job.setReducerClass(WordCountReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
编译并打包这个驱动程序:
$ javac classpathhadoop classpath
d driver_classes WordCountDriver.java
$ jar cvf driver.jar C driver_classes .
再次运行MapReduce作业:
$ hadoop jar driver.jar org.example.WordCountDriver /input /output
3.3 查看输出结果
查看HDFS上的输出目录/output
:
$ hdfs dfs ls /output $ hdfs dfs cat /output/partr00000
这将显示单词计数的结果。
原创文章,作者:未希,如若转载,请注明出处:https://www.kdun.com/ask/868261.html
本网站发布或转载的文章及图片均来自网络,其原创性以及文中表达的观点和判断不代表本网站。如有问题,请联系客服处理。
发表回复