如何优化MapReduce作业的运行效率?

MapReduce是一种编程模型,用于处理大规模数据集。它通过将作业分成两个阶段—映射(Map)和归约(Reduce)—来并行处理数据。在映射阶段,输入数据被分成小块并独立处理;归约阶段则汇总这些结果以得到最终输出。

MapReduce是一种编程模型,用于处理和生成大数据集的并行算法,它由两个主要步骤组成:Map(映射)和Reduce(归约),以下是一个简单的MapReduce作业示例,以及如何在Hadoop环境中运行它。

mapreduce运行_运行MapReduce作业
(图片来源网络,侵删)

1、编写一个Mapper类:

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
    public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String[] words = value.toString().split("\s+");
        for (String w : words) {
            word.set(w);
            context.write(word, one);
        }
    }
}

2、编写一个Reducer类:

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        context.write(key, new IntWritable(sum));
    }
}

3、编写一个驱动程序来运行MapReduce作业:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
    public static void main(String[] args) throws Exception {
        if (args.length != 2) {
            System.err.println("Usage: WordCount <input path> <output path>");
            System.exit(1);
        }
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(WordCountMapper.class);
        job.setCombinerClass(WordCountReducer.class);
        job.setReducerClass(WordCountReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

4、编译并打包Java代码为jar文件:


$ javac classpathhadoop classpath d wordcount_classes WordCount*.java
$ jar cvf wordcount.jar C wordcount_classes/ .

5、在Hadoop集群上运行MapReduce作业:

$ hadoop jar wordcount.jar WordCount /input/path /output/path

/input/path是包含输入数据的HDFS路径,/output/path是要将结果写入的HDFS路径。

mapreduce运行_运行MapReduce作业
(图片来源网络,侵删)
mapreduce运行_运行MapReduce作业
(图片来源网络,侵删)

原创文章,作者:未希,如若转载,请注明出处:https://www.kdun.com/ask/864059.html

本网站发布或转载的文章及图片均来自网络,其原创性以及文中表达的观点和判断不代表本网站。如有问题,请联系客服处理。

(0)
未希新媒体运营
上一篇 2024-08-11 15:46
下一篇 2024-08-11 15:48

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

产品购买 QQ咨询 微信咨询 SEO优化
分享本页
返回顶部
云产品限时秒杀。精选云产品高防服务器,20M大带宽限量抢购 >>点击进入