MapReduce输出到Hive的样例程序开发思路主要包括以下几个步骤:
1、数据预处理
清洗数据:去除空值、异常值等
转换数据格式:将数据转换为适合MapReduce处理的格式,如文本文件
2、MapReduce编程
编写Mapper类:实现map方法,用于处理输入数据并生成键值对
编写Reducer类:实现reduce方法,用于合并Mapper输出的键值对
配置作业参数:设置输入输出路径、作业名称等
3、输出结果到Hive
创建Hive表:根据需求创建相应的表结构
加载数据到Hive表:使用LOAD DATA语句将MapReduce输出的结果导入到Hive表中
以下是一个简单的MapReduce程序示例,用于统计文本中单词出现的次数,并将结果输出到Hive表中:
// Mapper类 public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] words = value.toString().split("\s+"); for (String w : words) { word.set(w); context.write(word, one); } } } // Reducer类 public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } context.write(key, new IntWritable(sum)); } } // Driver类 public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(WordCountMapper.class); job.setCombinerClass(WordCountReducer.class); job.setReducerClass(WordCountReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); }
4、将MapReduce输出结果导入Hive表
在Hive中创建表结构:CREATE TABLE word_count (word STRING, count INT);
将MapReduce输出结果导入Hive表:LOAD DATA LOCAL INPATH '/path/to/output' INTO TABLE word_count;
原创文章,作者:未希,如若转载,请注明出处:https://www.kdun.com/ask/838636.html
本网站发布或转载的文章及图片均来自网络,其原创性以及文中表达的观点和判断不代表本网站。如有问题,请联系客服处理。
发表回复