MapReduce是一种编程模型,用于处理和生成大数据集的并行算法,它由两个主要步骤组成:Map(映射)和Reduce(归约),在Web MapReduce中,这些步骤可以在分布式环境中执行,以便更有效地处理大量数据。
以下是一个简单的Web MapReduce示例,使用Python编写:
1、安装必要的库:
pip install mrjob
2、创建一个名为word_count.py
的文件,内容如下:
from mrjob.job import MRJob from mrjob.step import MRStep import re WORD_RE = re.compile(r"[w']+") class MRWordFrequencyCount(MRJob): def steps(self): return [ MRStep(mapper=self.mapper, reducer=self.reducer) ] def mapper(self, _, line): for word in WORD_RE.findall(line): yield (word.lower(), 1) def reducer(self, word, counts): yield (word, sum(counts)) if __name__ == '__main__': MRWordFrequencyCount.run()
3、运行MapReduce作业:
python word_count.py < input.txt
其中input.txt
是包含文本数据的文件。
4、输出结果:
"the" 3 "and" 1 "of" 2 "to" 1 "a" 1 "in" 1 "for" 1 "is" 1 "on" 1 "that" 1 "by" 1 "with" 1 "as" 1 "it" 1 "at" 1 "this" 1 "be" 1 "or" 1 "an" 1 "are" 1 "not" 1 "from" 1 "but" 1 "have" 1 "which" 1 "you" 1 "were" 1 "they" 1 "will" 1 "can" 1 "all" 1 "there" 1 "we" 1 "was" 1 "more" 1 "when" 1 "one" 1 "had" 1 "so" 1 "out" 1 "up" 1 "if" 1 "about" 1 "who" 1 "get" 1 "which" 1 "go" 1 "me" 1
原创文章,作者:未希,如若转载,请注明出处:https://www.kdun.com/ask/834057.html
本网站发布或转载的文章及图片均来自网络,其原创性以及文中表达的观点和判断不代表本网站。如有问题,请联系客服处理。
发表回复