MapReduce执行流程的详细步骤是什么?

MapReduce执行流程包括四个主要阶段:输入分片、映射(将输入数据转换为键值对)、洗牌(按键对数据进行排序和分组)以及归约(合并具有相同键的值)。这个过程在处理大规模数据集时,能够实现高效的并行计算。

MapReduce 执行流程主要包括以下几个步骤:

mapreduce执行流程_执行流程
(图片来源网络,侵删)

1、数据分割(InputSplit)

2、映射阶段(Mapper)

3、排序和分区(Sort and Shuffle)

4、归约阶段(Reducer)

5、输出结果(Output)

下面是详细的执行流程:

1、数据分割(InputSplit)

mapreduce执行流程_执行流程
(图片来源网络,侵删)

在 MapReduce 任务开始之前,首先需要将输入数据分割成若干个数据块(InputSplit),每个数据块对应一个 Mapper 任务,通常情况下,数据块的大小与 HDFS 的块大小相同,默认为 64MB。

2、映射阶段(Mapper)

Mapper 任务负责处理输入数据块,并将处理结果输出为键值对(keyvalue),Mapper 的输出结果会被写入到本地磁盘上的临时文件中。

3、排序和分区(Sort and Shuffle)

在 MapReduce 执行过程中,Shuffle 阶段负责将 Mapper 输出的键值对进行排序、分区和合并,具体过程如下:

排序(Sort):对 Mapper 输出的键值对按键进行排序。

分区(Partition):根据键的值将排序后的键值对分配到不同的 Reducer 任务。

mapreduce执行流程_执行流程
(图片来源网络,侵删)

合并(Combine):可选操作,用于在 Mapper 端对输出结果进行局部汇总,减少网络传输的数据量。

4、归约阶段(Reducer)

Reducer 任务负责处理从 Mapper 任务接收到的数据,并将最终结果输出到 HDFS,具体过程如下:

读取数据:Reducer 任务从各个 Mapper 任务中获取属于自己的数据。

归约操作:对读取到的数据进行归约操作,例如求和、计数等。

输出结果:将归约后的结果输出到 HDFS。

5、输出结果(Output)

Reducer 任务将最终结果输出到 HDFS,完成整个 MapReduce 任务。

下面是一个简单的单元表格,展示了 MapReduce 执行流程的关键步骤:

步骤 描述
数据分割 将输入数据分割成若干个数据块
映射阶段 处理数据块并输出键值对
排序和分区 对键值对进行排序、分区和合并
归约阶段 处理从 Mapper 任务接收到的数据并输出结果
输出结果 将最终结果输出到 HDFS

原创文章,作者:未希,如若转载,请注明出处:https://www.kdun.com/ask/825450.html

本网站发布或转载的文章及图片均来自网络,其原创性以及文中表达的观点和判断不代表本网站。如有问题,请联系客服处理。

(0)
未希
上一篇 2024-08-01 15:37
下一篇 2024-08-01 15:40

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

产品购买 QQ咨询 微信咨询 SEO优化
分享本页
返回顶部
云产品限时秒杀。精选云产品高防服务器,20M大带宽限量抢购 >>点击进入