python分段函数拟合

Python分段函数拟合可以使用SciPy库中的interp1d函数,通过定义不同区间的函数表达式进行拟合

分段函数拟合简介

分段函数拟合是一种将数据分为若干段,然后对每一段分别进行拟合的方法,这种方法适用于数据在不同区间内呈现出不同趋势的情况,在Python中,我们可以使用SciPy库中的interpolate.UnivariateSpline函数来实现分段函数拟合。

分段函数拟合步骤

1、导入所需库

python分段函数拟合

2、准备数据

3、确定分段点

python分段函数拟合

4、对每一段进行拟合

5、绘制拟合结果

python分段函数拟合

详细代码实现

导入所需库
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import UnivariateSpline
准备数据
x = np.array([0, 1, 2, 3, 4, 5])
y = np.array([0, 1, 4, 9, 16, 25])
确定分段点
x_breaks = [1, 3]
y_breaks = [np.mean(y[:2]), np.mean(y[2:])]
对每一段进行拟合
spline1 = UnivariateSpline(x[:2], y[:2], k=1)
spline2 = UnivariateSpline(x[2:], y[2:], k=1)
绘制原始数据和拟合结果
plt.plot(x, y, 'o', label='原始数据')
plt.plot(x_breaks, y_breaks, 'ro', label='分段点')
plt.plot(x[:2], spline1(x), 'g', label='第一段拟合')
plt.plot(x[2:], spline2(x), 'b', label='第二段拟合')
plt.legend()
plt.show()

单元表格

步骤 方法 参数 说明
1 导入所需库 import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import UnivariateSpline
导入numpy、matplotlib和SciPy库中的相关模块
2 准备数据 x = np.array([0, 1, 2, 3, 4, 5])
y = np.array([0, 1, 4, 9, 16, 25])
定义x和y的数据,分别为0到5的整数和对应的分段函数值
3 确定分段点 x_breaks = [1, 3]
y_breaks = [np.mean(y[:2]), np.mean(y[2:])]
根据数据特点确定分段点的位置,并计算各段的平均值作为分段点的纵坐标
4 对每一段进行拟合 spline1 = UnivariateSpline(x[:2], y[:2], k=1)
spline2 = UnivariateSpline(x[2:], y[2:], k=1)
使用UnivariateSpline函数对每一段进行线性拟合,k参数表示多项式的阶数,这里设置为1表示线性拟合
5 绘制原始数据和拟合结果 plt.plot(x, y, 'o', label='原始数据')
plt.plot(x_breaks, y_breaks, 'ro', label='分段点')
plt.plot(x[:2], spline1(x), 'g', label='第一段拟合')
plt.plot(x[2:], spline2(x), 'b', label='第二段拟合')
plt.legend()
plt.show()
使用matplotlib库绘制原始数据和拟合结果,包括分段点和每一段的拟合曲线

原创文章,作者:未希,如若转载,请注明出处:https://www.kdun.com/ask/648604.html

本网站发布或转载的文章及图片均来自网络,其原创性以及文中表达的观点和判断不代表本网站。如有问题,请联系客服处理。

(0)
未希新媒体运营
上一篇 2024-05-23 10:54
下一篇 2024-05-23 11:00

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

产品购买 QQ咨询 微信咨询 SEO优化
分享本页
返回顶部
云产品限时秒杀。精选云产品高防服务器,20M大带宽限量抢购 >>点击进入