python 正态分布检验

正态分布检验通常使用SciPy库中的scipy.stats.normaltest函数进行。该函数接收一个数据集,然后返回两个值:统计量(statistic)和p值(p-value)。如果p值小于某个显著性水平(例如0.05),则我们拒绝原假设,即数据不符合正态分布

正态分布检验是一种统计方法,用于检验数据是否符合正态分布,在Python中,我们可以使用SciPy库中的normaltest函数来进行正态分布检验,以下是详细的步骤和代码:

1、导入所需库

python 正态分布检验

import numpy as np
import scipy.stats as stats

2、生成或获取数据

data = np.random.randn(100)  # 生成100个随机数

3、进行正态分布检验

python 正态分布检验

k2, p = stats.normaltest(data)

4、输出结果

print("p值: ", p)

5、判断是否符合正态分布

python 正态分布检验

alpha = 0.05  # 设置显著性水平
if p < alpha:
    print("数据不符合正态分布")
else:
    print("数据符合正态分布")

将以上代码整合在一起:

import numpy as np
import scipy.stats as stats
生成或获取数据
data = np.random.randn(100)
进行正态分布检验
k2, p = stats.normaltest(data)
输出结果
print("p值: ", p)
判断是否符合正态分布
alpha = 0.05
if p < alpha:
    print("数据不符合正态分布")
else:
    print("数据符合正态分布")

原创文章,作者:未希,如若转载,请注明出处:https://www.kdun.com/ask/615603.html

本网站发布或转载的文章及图片均来自网络,其原创性以及文中表达的观点和判断不代表本网站。如有问题,请联系客服处理。

(0)
未希
上一篇 2024-05-15 10:08
下一篇 2024-05-15 10:09

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

产品购买 QQ咨询 微信咨询 SEO优化
分享本页
返回顶部
云产品限时秒杀。精选云产品高防服务器,20M大带宽限量抢购 >>点击进入