视觉智能平台人脸搜索参数详解
在视觉智能平台的人脸识别功能中,通常有两个重要的参数:threshold
和 face_size
,这两个参数对于搜索结果的精确度和性能有着重要影响。
1. threshold(阈值)
1.1 定义
threshold
是一个介于0到1之间的数值,用于确定两个面部特征之间的匹配程度,当相似度超过这个阈值时,系统会认为这两个面部是同一个人。
1.2 使用方式
当 threshold
设置得较低(例如0.3)时,只有非常相似的面部才会被识别为同一个人,这可以减少误报,但可能会增加漏报。
当 threshold
设置得较高(例如0.8)时,较为相似的面部也会被识别为同一个人,这可以增加识别率,但可能会增加误报。
1.3 应用场景
在安全要求较高的场景下,如支付验证,推荐使用较低的 threshold
。
在用户体验优先的场景下,如推荐好友,可以使用较高的 threshold
。
2. face_size(人脸大小)
2.1 定义
face_size
是一个表示像素大小的值,用于指定最小可检测的人脸大小,如果输入图像中的人脸小于这个值,那么系统将无法检测到这个人脸。
2.2 使用方式
当 face_size
设置得较大(例如200)时,只有较大的人脸才能被检测到,这可以提高检测速度,但可能会漏掉小的人脸。
当 face_size
设置得较小(例如50)时,较小的人脸也能被检测到,但这可能会降低检测速度。
2.3 应用场景
在实时性要求较高的场景下,如视频监控,推荐使用较大的 face_size
。
在需要检测所有人脸的场景下,如人脸计数,可以使用较小的 face_size
。
归纳
通过合理调整 threshold
和 face_size
,可以在保证识别精度的同时,提高系统的性能,具体设置应根据实际业务需求和场景进行调整。
原创文章,作者:未希,如若转载,请注明出处:https://www.kdun.com/ask/529183.html
本网站发布或转载的文章及图片均来自网络,其原创性以及文中表达的观点和判断不代表本网站。如有问题,请联系客服处理。
发表回复