mapreduce工作机制_配置MapReduce任务日志归档和清理机制
MapReduce是一种编程模型,用于处理大规模数据集,它的主要思想是将任务分解为多个小任务,然后在集群中的不同节点上并行执行这些任务,最后将结果汇总起来,在MapReduce任务的运行过程中,会产生大量的日志信息,为了确保系统的稳定性和可维护性,我们需要对日志进行归档和清理,本文将介绍如何配置MapReduce任务日志归档和清理机制。
1. MapReduce任务日志归档
MapReduce任务日志主要包括两类:一类是MapReduce框架本身的日志,另一类是用户自定义的日志,对于这两类日志,我们可以采用不同的归档策略。
1.1 MapReduce框架日志归档
MapReduce框架日志主要包括JobTracker、TaskTracker和ResourceManager等组件的日志,这些日志通常存储在Hadoop集群的各个节点上,我们可以使用Hadoop的日志收集工具(如Apache Flume)将这些日志收集到一个集中的地方,然后进行归档。
具体操作步骤如下:
1、安装并配置Apache Flume。
2、创建一个Flume配置文件,定义数据源、通道和接收器。
3、启动Flume agent,开始收集日志。
4、定期将收集到的日志归档到指定的存储系统(如HDFS、HBase等)。
1.2 用户自定义日志归档
用户自定义日志是指在MapReduce任务中,用户通过System.out.println()
等方法输出的日志,这类日志通常会被重定向到Hadoop的stdout和stderr文件中,我们可以将这些文件归档到HDFS或其他存储系统中。
具体操作步骤如下:
1、在Hadoop配置文件中设置日志重定向选项,将stdout和stderr文件重定向到HDFS或其他存储系统。
2、定期将归档的日志文件从存储系统中导出,以便后续分析。
2. MapReduce任务日志清理
日志清理的目的是释放磁盘空间,防止磁盘空间不足导致系统性能下降,我们可以采用以下策略进行日志清理:
1、根据日志的生命周期设置合适的保留期限,可以设置日志文件在创建后的7天内有效,超过7天的日志文件将被删除。
2、定期检查磁盘空间使用情况,当磁盘空间使用率超过一定阈值时,触发日志清理操作。
3、对于已经归档的日志文件,可以根据实际需求进行压缩、合并等操作,以减少存储空间占用。
3. 相关问答FAQs
Q1: 如何设置Hadoop日志重定向选项?
A1: 在Hadoop配置文件中,可以通过以下参数设置日志重定向选项:
<property> <name>mapred.userlog.retain.hours</name> <value>7*24</value> <description>设置MapReduce任务日志的保留时间(单位:小时),默认值为7*24,表示保留7天。</description> </property> <property> <name>mapred.userlog.retain.check.interval</name> <value>3600</value> <description>设置MapReduce任务日志保留时间的检查间隔(单位:秒),默认值为3600,表示每小时检查一次。</description> </property>
Q2: 如何配置Flume收集MapReduce框架日志?
A2: 需要安装并配置Apache Flume,创建一个Flume配置文件,定义数据源、通道和接收器。
定义数据源 agent.sources = source1 agent.sources.source1.type = spooldir agent.sources.source1.spoolDir = /var/log/hadoop/logs 定义通道 agent.channels = channel1 agent.channels.channel1.type = memory agent.channels.channel1.capacity = 1000 agent.channels.channel1.transactionCapacity = 100 定义接收器 agent.sinks = sink1 agent.sinks.sink1.type = hdfs agent.sinks.sink1.hdfs.path = hdfs://namenode:8020/flume/logs agent.sinks.sink1.hdfs.filePrefix = hadoop%{uuid}%{timestamp} agent.sinks.sink1.hdfs.rollSize = 0 agent.sinks.sink1.hdfs.rollCount = 10000 agent.sinks.sink1.hdfs.rollInterval = 600 agent.sinks.sink1.hdfs.writeFormat = Text 绑定数据源、通道和接收器 agent.sources.source1.channels = channel1 agent.sinks.sink1.channel = channel1
启动Flume agent,开始收集日志:
$ flumeng agent n agent c conf f /path/to/flume.conf Dflume.root.logger=INFO,console
配置项 | 说明 | 示例 |
mapreduce.map.log.output.dir | 指定Map任务日志的输出目录 | hdfs://namenode:8020/user/hadoop/logs/maptask |
mapreduce.reduce.log.output.dir | 指定Reduce任务日志的输出目录 | hdfs://namenode:8020/user/hadoop/logs/reducetask |
mapreduce.jobhistory.logoutputdir | 指定JobHistory日志的输出目录 | hdfs://namenode:8020/user/hadoop/yarn/applicationhistory logs |
mapreduce.jobhistory.address | 指定JobHistory Server的地址 | http://jobhistoryserver:19888 |
mapreduce.jobhistory.webapp.name | 指定JobHistory Webapp的名称 | jobhistory |
mapreduce.jobhistory.logCleaning.intervalSecs | 指定日志清理的时间间隔(秒) | 86400 |
mapreduce.jobhistory.logCleaning.maxArchivedFiles | 指定日志归档的最大文件数 | 1000 |
mapreduce.jobhistory.logCleaning.maxAgeSecs | 指定日志归档的最大年龄(秒) | 604800 |
mapreduce.jobhistory.logCleaning.maxLogSize | 指定日志归档的最大文件大小(字节) | 1073741824 |
mapreduce.jobhistory.logCleaning.pattern | 指定日志归档的文件匹配模式 | hdfs://namenode:8020/user/hadoop/logs/maptask.*.log |
通过配置以上参数,可以实现MapReduce任务的日志归档和清理机制,可以通过设置mapreduce.jobhistory.logCleaning.intervalSecs
来指定日志清理的时间间隔,通过设置mapreduce.jobhistory.logCleaning.maxArchivedFiles
和mapreduce.jobhistory.logCleaning.maxAgeSecs
来限制日志归档的最大文件数和最大年龄,通过设置mapreduce.jobhistory.logCleaning.maxLogSize
来限制日志归档的最大文件大小。
原创文章,作者:未希,如若转载,请注明出处:https://www.kdun.com/ask/1219985.html
本网站发布或转载的文章及图片均来自网络,其原创性以及文中表达的观点和判断不代表本网站。如有问题,请联系客服处理。
发表回复