hbasesite.xml
文件,添加以下配置:,,“xml,,hbase.client.retries.number,2,,,hbase.client.pause,500,,
“,,这样配置后,HBase客户端会在第一次读取失败时尝试再次读取。配置HBase双读功能
在大数据应用中,MapReduce和HBase的集成是常见的需求,HBase作为一种分布式、面向列的NoSQL数据库,与MapReduce框架结合可以实现高效的数据处理,本文将详细介绍如何在MapReduce任务中配置HBase双读功能,以提升系统的高可用性和读取效率。
HBase双读功能概述
HBase双读功能是一种提高集群系统高可用性的关键特性,适用于以下四种查询场景:使用Get读取数据、使用批量Get读取数据、使用Scan读取数据以及基于二级索引查询,通过双读机制,客户端可以同时从主备集群读取数据,从而减少查询毛刺,确保每一次读请求的成功率。
应用场景
1、高成功率:双并发读机制保证每次读请求的成功率。
2、可用性:单集群故障时,查询业务不中断,短暂的网络抖动也不会导致查询时间变长。
3、通用性:双读特性不支持双写,但不影响原有的实时写场景。
4、易用性:客户端封装处理,业务侧不感知。
配置步骤
1、准备配置文件:获取HBase主集群和备集群的配置文件(coresite.xml、hbasesite.xml、hdfssite.xml),并将它们分别放置在“src/main/resources/conf/active”和“src/main/resources/conf/standby”目录下。
2、创建hbasedual.xml文件:在“src/main/resources/conf”目录下创建hbasedual.xml文件,并添加以下内容:
<configuration> <! 主集群配置文件目录 > <property> <name>hbase.dualclient.active.cluster.configuration.path</name> <value>{样例代码目录}\src\main\resources\conf\active</value> </property> <! 备集群配置文件目录 > <property> <name>hbase.dualclient.standby.cluster.configuration.path</name> <value>{样例代码目录}\src\main\resources\conf\standby</value> </property> <! 双读模式的Connection实现 > <property> <name>hbase.client.connection.impl</name> <value>org.apache.hadoop.hbase.client.HBaseMultiClusterConnectionImpl</value> </property> <! 安全模式 > <property> <name>hbase.security.authentication</name> <value>kerberos</value> </property> <property> <name>hadoop.security.authentication</name> <value>kerberos</value> </property> </configuration>
3、加载双读配置:在Java代码中加载双读配置,例如在“com.huawei.bigdata.hbase.examples”包的“TestMain”类的init方法中添加如下代码片段:
private static void init() throws IOException { // Default load from conf directory conf = HBaseConfiguration.create(); //In Windows environment String userdir = TestMain.class.getClassLoader().getResource("conf").getPath() + File.separator; //In Linux environment //String userdir = System.getProperty("user.dir") + File.separator + "conf" + File.separator; conf.addResource(new Path(userdir + "hbasedual.xml"), false); }
4、确定数据来源的集群:在GET请求和SCAN请求中,判断返回结果是否为DualResult或HBaseMultiScanner,如果是,则记录集群ID。
// GET请求 Result result = table.get(get); if (result instanceof DualResult) { LOG.info(((DualResult)result).getClusterId()); } // SCAN请求 ResultScanner rScanner = table.getScanner(scan); if (rScanner instanceof HBaseMultiScanner) { LOG.info(((HBaseMultiScanner)rScanner).getClusterId()); }
5、配置日志打印:在log4j.properties文件中增加如下内容,以便客户端输出metric信息到指定文件:
log4j.logger.DUAL=debug,DUAL log4j.appender.DUAL=org.apache.log4j.RollingFileAppender log4j.appender.DUAL.File=/var/log/dual.log //客户端本地双读日志路径,根据实际路径修改,但目录要有写入权限 log4j.additivity.DUAL=false log4j.appender.DUAL.MaxFileSize=${hbase.log.maxfilesize} log4j.appender.DUAL.MaxBackupIndex=${hbase.log.maxbackupindex} log4j.appender.DUAL.layout=org.apache.log4j.PatternLayout log4j.appender.DUAL.layout.ConversionPattern=%d{ISO8601} %5p [%t] %c{2}: %m%n
注意事项
1、最终一致性:由于备集群读取的数据可能和主集群存在差异,因此只能实现最终一致性。
2、仅用于查询:HBase的双读功能仅用于查询,不支持双写,当主集群宕机时,最新数据无法同步,备集群可能查询不到最新数据。
3、RPC限制:HBase的Scan操作可能分解为多次RPC,由于相关session信息在不同集群间不同步,数据不能保证完全一致,因此双读只在第一次RPC时生效。
4、Admin接口限制:HBase Admin接口和实时写入接口只会访问主集群,如果主集群宕机,这些功能将不可用。
FAQs
问题1:HBase双读功能支持双写吗?
答案:不支持,HBase的双读功能仅用于查询,不支持双写,当主集群宕机时,最新数据无法同步,备集群可能查询不到最新数据。
问题2:如何确定HBase双读功能是否生效?
答案:可以通过检查返回结果是否为DualResult或HBaseMultiScanner来判断,如果是,则表示双读功能生效,并可以记录集群ID,可以在log4j.properties文件中配置日志打印,将metric信息输出到指定文件,以便监控双读功能的运行情况。
通过以上步骤和注意事项,可以在MapReduce任务中成功配置HBase双读功能,从而提高系统的高可用性和读取效率。
配置项 | 说明 | 示例 |
HBase集群配置 | 确保HBase集群已经正确配置,并且启动。 | 确保HBase服务运行正常。 确保HBase相关配置文件正确,如hbasesite.xml。 |
MapReduce配置 | 在MapReduce作业中启用HBase双读功能。 | 在MapReduce作业的配置中设置mapreduce.map.input.key.comparator.class 为org.apache.hadoop.hbase.mapreduce.KeycomparatorWrapper 。设置 mapreduce.map.input.keycomparator.options 为HBaseRowKeyComparator 。 |
HBase连接配置 | 配置MapReduce作业与HBase集群的连接。 | 在MapReduce作业中,通过Configuration 对象配置HBase相关参数,如hbase.zookeeper.quorum 、hbase.zookeeper.property.clientPort 等。 |
HBase扫描配置 | 在MapReduce作业中配置HBase表的扫描。 | 设置TableMapReduceUtil.initTableMapperJob 方法中的TableInputFormat 参数为HBase表对应的实例。配置扫描范围、过滤条件等。 |
HBase输出配置 | 配置MapReduce作业的输出。 | 使用TableOutputFormat 来设置HBase输出格式。配置输出表名、列族等。 |
HBase双读实现 | 使用HBase的过滤器实现双读功能。 | 在HBase扫描时,使用Filter 来过滤出需要读取的数据。
在MapReduce作业中,根据需要对数据进行处理。 |
示例代码 | 以下是一个使用HBase双读功能的MapReduce作业示例代码。 | “`java |
Configuration config = new Configuration();
config.set("hbase.zookeeper.quorum", "zookeeper_host");
config.set("hbase.zookeeper.property.clientPort", "2181");
Table table = connectToHBaseTable(config, "my_table");
TableMapReduceUtil.initTableMapperJob(
"my_table",
new HBaseTableInputFormat(),
MyMapper.class,
Text.class,
HBaseResult.class,
config
);
TableMapReduceUtil.initTableOutputFormatJob(
"my_output_table",
new HBaseTableOutputFormat(),
MyReducer.class,
Text.class,
HBaseResult.class,
config
);
Job job = Job.getInstance(config, "HBase Double Read Example");
job.waitForCompletion(true);
“` |
通过以上配置,可以在MapReduce作业中实现HBase的双读功能。
原创文章,作者:未希,如若转载,请注明出处:https://www.kdun.com/ask/1189579.html
本网站发布或转载的文章及图片均来自网络,其原创性以及文中表达的观点和判断不代表本网站。如有问题,请联系客服处理。
发表回复