信息分类系统源码通常包括数据结构、算法和界面设计,用于高效管理和检索信息。
import os import re import jieba import numpy as np from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score, confusion_matrix def load_data(data_dir): labels = [] contents = [] for label in os.listdir(data_dir): label_dir = os.path.join(data_dir, label) if os.path.isdir(label_dir): for file in os.listdir(label_dir): file_path = os.path.join(label_dir, file) with open(file_path, 'r', encoding='utf8') as f: content = f.read() contents.append(content) labels.append(label) return labels, contents def preprocess_data(contents): processed_contents = [] for content in contents: content = re.sub('[^u4e00u9fa5]+', '', content) # 去除非中文字符 words = jieba.cut(content) # 分词 processed_contents.append(' '.join(words)) return processed_contents def train_and_evaluate(X_train, X_test, y_train, y_test): vectorizer = CountVectorizer() X_train_vec = vectorizer.fit_transform(X_train) X_test_vec = vectorizer.transform(X_test) clf = MultinomialNB() clf.fit(X_train_vec, y_train) y_pred = clf.predict(X_test_vec) accuracy = accuracy_score(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) return accuracy, cm if __name__ == '__main__': data_dir = 'path/to/your/data' # 替换为你的数据目录路径 labels, contents = load_data(data_dir) processed_contents = preprocess_data(contents) X_train, X_test, y_train, y_test = train_test_split(processed_contents, labels, test_size=0.2, random_state=42) accuracy, cm = train_and_evaluate(X_train, X_test, y_train, y_test) print("Accuracy:", accuracy) print("Confusion Matrix:") print(cm)
这个源码首先加载数据,然后对文本内容进行预处理(去除非中文字符和分词),接着使用朴素贝叶斯分类器进行训练和评估,你需要将data_dir
变量替换为你的数据目录路径,该目录下应该包含各个类别的子目录,每个子目录中包含属于该类别的文本文件。
以上就是关于“信息分类系统源码”的问题,朋友们可以点击主页了解更多内容,希望可以够帮助大家!
原创文章,作者:未希,如若转载,请注明出处:https://www.kdun.com/ask/1108094.html
本网站发布或转载的文章及图片均来自网络,其原创性以及文中表达的观点和判断不代表本网站。如有问题,请联系客服处理。
发表回复